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1 Introduction

BIP is a command-line interface tool for processing and analysing images, with a spe-
cific bias towards microscopy images that are typically generated in developmental
and cell biology research studies. The software integrates many standard algorithms
as well as specific algorithms we have developed in our own research projects. Many
functionalities are quite generic image processing operators, while others address spe-
cific needs typically encountered in bioimage analysis. We initially developed BIP for
our own needs and now make it available to a wider audience in the hope it will be
useful to others.

1.1 Image types

The first major feature of BIP is to support all images types and numerical types that are
typically encountered in bioimage processing. This includes all combinations of image
dimensions (2D and 3D), number of channels (such as different fluorescent channels),
number of time-points (as acquired in time-lapse experiments). Vectorial images are
also supported, in which two or more values can be assigned to each image position.
Such images covers true color RGB images (as typically processed in histological stud-
ies) but also gradient images (with one gradient component per image dimension),
results of Fourier transforms etc. Though such images could be represented as multi-
channel images, there are some theoretical and practical motivations for having this
specific representation. Among others, this also implies that multi-channel vectorial
images are also supported.

1.2 Numerical types

The second major feature is that BIP supports all standard numerical types, from the
most usual ones in microscopy (unsigned 8-bits and unsigned 16-bits) to less classical
ones. The complete list include unsigned char (8-bits), signed char (8-bits), unsigned
short (16-bits), signed short (16-bits), unsigned int, signed int, float (known as 32-bits
in ImageJ/Fiji) and double (Table 1). This allows in particular to implement pipelines
in which the desired numerical precision is preserved throughout. A specific operator
implements conversions between all numerical types (see convert operator below).

BIP operators automatically detect input image type and numerical type from the in-
put images, thus offering a user-transparent support for all possible numerical types.
Almost all operators support all types and write the output image in the same nu-
merical type as the input image. Some operators store the output image in a different
type. This is the case for example for operators computing real values on output (e.g.,
Euclidean distance transform or Fourier transform).
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Type Bits Min Max Note
uint8 8 0 255 A.k.a. 8 bits (Fiji)
int8 8 -128 127
uint16 16 0 65535 A.k.a. 16 bits (Fiji)
int16 16 -32768 32767
uint32 32 0 4,294,967,295
int32 32 -2,147,483,648 2,147,483,647
float 32 -3.4e+38 3.4e+38 A.k.a. 32 bits (Fiji)
double 64 -1.8e+304 1.8e+304

Table 1: Numerical types supported in BIP. The types are listed by their names as used
in BIP operators (such as the convert operator). For each type, the table gives the
number of bits used to store a value, and the minimum and maximum values that
can be represented. Equivalence with the nomenclature used in ImageJ/Fiji (when
available) is given in the last column.

1.3 Batch processing

The third major feature of BIP is to be designed for batch processing of image datasets.
BIP can take as input one or several images and process them according to the specified
operator. As a command-line tool, BIP can rely on the features of the shell to process
complete set of images or only subsets defined using specific filename patterns. For
example, to apply an operator to all images within an input directory, simply enter:

shell$ bip <operator> ../input/*.tif

For example, provided a standardized filename nomenclature (such as using the ISO
8601 standard to represent dates) has been adopted (which is more than highly recom-
mended), the images acquired in October, November and December 2017 and 2019 on
DAPI-stained samples would be typically processed by the following command:

shell$ bip <operator> ../input/*201[79]-1[012]-*DAPI*.tif

1.4 Pipelines

The fourth major feature of BIP is to allow the implementation of pipelines. Pipeline
syntax has been designed to be as simple as possible. As a result, a pipeline is simply
defined by the list of the corresponding operators and obey the same syntax as the one
used when invoking each operator in turn. The sequence of operators composing a
pipeline is typically listed in a text file. However, an option is also available to define
pipeline upon invocation on the command line. See Section 9 to learn more on the
advantages of pipelines and how to use them.
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1.5 Image file formats

One limitation of BIP is the absence of support for a large number of image file formats.
Indeed, the main supported format for input images in BIP is the TIFF file format and
its BigTIFF declination. However, tools are available (for example in ImageJ/Fiji) for
converting images from almost any format to TIFF. In addition, BIP also supports some
formats derived from TIFF, such as Zeiss LSM image file format.

By default, BIP stores output images as compressed TIF files, using the lossless LZW
compression scheme. This may be an issue for some image readers. Compression
as a default writing mode can therefore be disabled using the global -u option (see
Section 11). In addition, users can use the BIP uncompress operator to uncompress
their files at times where they process them with specific readers, before using the
compress operator for long-term storage when done.
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2 Installation instructions

2.1 Linux

Download the distributed executable from the website. Save the file in a directory, typ-
ically $HOME/bin. We recommend to use a directory that is included in your $PATH
environment variable. This way, you can access BIP from any location on your system
without having to type the full access path to the executable file.

Check that you have executable permissions on the file. This can be done from the
file navigator, by right-clicking on the file and then going into the Permissions tab,
clicking "Allow execution" (under Ubuntu). Alternatively, this can be done by opening
a terminal, going into the installation directory, and entering the command:

shell$ chmod a+x bip

To check that the installation is correct, open a terminal and simply enter:

shell$ bip

The command should display BIP usage and the list of available operators.

2.2 Windows

Download the distributed archive for Windows from BIP website. Extract the folder
contained in this archive to the desired location on your system, typically in Program
Files. Add the extracted folder to your Path environment variable.

To check that the installation is correct, open a command-line interpreter (cmd.exe) or
command-line shell (PowerShell or MSYS2 shell) and enter:

shell$ bip

The command should display BIP usage and the list of available operators.

7



3 Basic operations

abs

This operator replaces the values of the input image by their absolute values.

add <image>

This operator performs the point-to-point addition with the specified image.

The operation is only possible between images of same size and same numerical type.

add-value <value>

This operator adds the specified value to the input image.

compress

This operator compresses the input image files (lossless compression). The compres-
sion algorithm is the Lempster-Ziv-Welch (LZW) method (Welch, 1984), which is also
described in the TIFF specifications (Adobe Developers Association, 1992). No output
file is written if the input file is already compressed.

convert [-f] <uint8|uint16|uint32|int8|int16|int32|float32|float64>

Converts the input image to the specified numerical type (see Table 1 for the character-
istics of the different numerical types available in BIP).

Conversion may cause truncation when converting between types of different ranges,
such as from uint16 (16-bit image) to uint8 (8-bit image). Conversion may also
cause a loss of precision, as when converting from float32 to int32. By default, the
operator raises an error if the conversion would result in truncation or loss of precision.
This behaviour can be overridden using the -f option, which forces the conversion to
be performed even if such errors occur.

divide <image>

This operator performs the point-to-point division with the specified image.

The operation is only possible between images of same size and same numerical type.

divide-value <value>

This operator divides the input image with the specified value.
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Column Information
file Input image filename (including access path, if any)
type Numerical type of image values (see supported types in Table 1)
compression Compression mode (none or lzw)
size1 Number of rows in the image
size2 Number of columns in the image
size3 Number of slices in the image (equals 1 for 2D images)
samples Number of samples (values) per pixel/voxel
timepoints Number of timepoints in the image
channels Number of channels in the image
dx Spatial sampling in the horizontal direction (“pixel width”)
dy Spatial sampling in the vertical direction (“pixel height”)
dz Spatial sampling between slices (“voxel depth”)
minimum The minimum value contained in the image [optional]
maximum The maximum value contained in the image [optional]

Table 2: Image parameters listed by the info operator.

info [-l][-s]

This operator prints a table of properties for the input images. The properties include
image size, number of channels and timepoints, numerical type, spatial calibration,
and compression mode. See Table 2 for a detailed listing of the reported parameters.

This operator is particularly useful to check that images have a correct spatial calibra-
tion, and that a collection of images in a project have consistent spatial calibrations or
numerical types.

If the -l option is specified, the table displays in addition the minimum and maximum
value in the image.

The output of this operator may look messy and difficult to read in the terminal, espe-
cially when applied to large sets of images with filenames of varying size (which breaks
the alignment of column contents). You can use the -s option, or the shell redirection
operator, to store the output in a file that can subsequently be loaded in your preferred
spreadsheet application. With the -s option, the output is automatically stored in a
file named info.df (in addition to be displayed in the terminal). With the redirection
operator, the output is just written in the filename you specify.

merge-timepoints

This operator merges input images along their temporal dimension. Any number of
images, containing each an arbitrary number of timepoints, can be merged. The only
condition that the images must satisfy is that their other dimensions (XYZC), their
value types, and their spatial calibrations are identical.

The output filename is generated from the basename of the last specified image.
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multiply <image>

This operator performs the point-to-point addition with the specified image.

The operation is only possible between images of same size and same numerical type.

multiply-value <value>

This operator multiplies the input image by the specified value.

split-channels

This operator splits the different channels contained in the input image into as many
separate files. Individual channel files are numbered starting from 0. Filenames are
padded with ’0’s to ensure a constant filename size.

No output file is generated if the input image contains a single channel.

split-planes

This operator splits the different planes (slices) contained in the input image into as
many separate files. Individual plane files are numbered starting from 0. Filenames
are padded with ’0’s to ensure a constant filename size.

No output file is generated if the input image contains a single plane (2D image).

split-timepoints

This operator splits the different timepoints contained in the input image into as many
separate files. Individual timepoint files are numbered starting from 0. Filenames are
padded with ’0’s to ensure a constant filename size.

No output file is generated if the input image contains a single timepoint.

subtract <image>

This operator performs the point-to-point subtraction with the specified image.

The operation is only possible between images of same size and same numerical type.

subtract-value <value>

This operator subtracts the specified value to this image.

uncompress

This operator uncompresses the input images. No output file is written if the input
file is already uncompressed. This operator may be useful to allow or to speed-up file
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loading in software in which the opening of compressed image files is not supported
or is too slow.
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4 Image transforms

crop-from [-m <crop-margin>] <label-image-path>

This operator computes the bounding boxes of the labelled objects found in the label
image specified by label-image-path and uses these bounding boxes to crop the
input image(s) into as many sub-images (Figure 1). The output sub-images are stored
in separate files, with filenames obtained by appending label numbers to the basename
of the input image file.

The -m option can be used to add a margin around the crop region. The margin width
is expressed in pixels/voxels.

input.tif labels.tif crop-from -m 5
labels.tif input.tif

Figure 1: Cropping an image from a label image: operator crop-from.

The crop-from operator can also be used to split the segmentation masks of the dif-
ferent objects present in a segmented image. In this case, the label image is specified
twice on the command line, first as the image to compute the crop boxes, and second
as the image to be cropped:

shell$ bip crop-from -m 1 labels.tif labels.tif

fft

This operator computes the fast Fourier Transform of the input image. Only images
with 1 sample per image position can be processed (multi-channel images are sup-
ported). The output images have 2 samples, the first one storing the real part and the
second one storing the imaginary part of the complex numbers of the Fourier Trans-
form. Note that the origin (zero-frequency component) is not centered in the output
image (no swap of quadrants).

flip x|y|z
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This operator flips the contents of the input image along the specified direction (sym-
metry transform). Specifying ’x’ corresponds to a left/right symmetry. Specifying ’y’
corresponds to a top/bottom symmetry. Specifying ’z’ corresponds to a stack top/s-
tack bottom symmetry in a 3D image. As expected, using the ’z’ option on a 2D image
does not modify its contents.

invert auto|type|<value>

This operator inverts the values of the input image. The inversion is performed ac-
cording to the following formula, applied at every image position:

invertedValue← pivotValue− originalValue

The pivot value depends on the parameter passed to the operator:

auto the pivot value is taken as the maximum value in the image;

type the pivot value is taken as the maximum possible value for the numerical type
of the image (255 for unsigned char, 65535 for unsigned int, etc.);

<value> the pivot value is set to the specified value.

isoscale nearest|linear

This operator resizes the input image using interpolation in order to obtain an output
image with an isotropic spatial calibration (i.e., as if its spatial sampling was isotropic).
For example, an input image with voxel size of 0.5,0.5,1.0 micron would have its num-
ber of slices doubled by this operator, thus yielding a voxel size of 0.5,0.5,0.5 micron.

The operator automatically determines which direction(s) should be resampled. The
direction(s) with the smallest spatial sampling is preserved, and the other direction(s)
are upsampled. Note that because of the discrete nature of digital images, it is not
always possible to obtain an exactly isotropic element size.

The parameter of the operator specifies the interpolation mode. As a rule of thumb, it
is recommended to use the linear mode in all cases except when processing binary
or label images, for which averaging values is meaningless. For these images, the
parameter should be set to nearest (no interpolation).

mask <mask-image-path>

This operator performs a masking operation by setting to 0 all positions of the input
image that fall out of the specified mask. A position is considered as located within the
mask if its value in the mask image differs from 0. Note this allows to use mask images
that are not necessarily binary images (such as label images; see Figure 2), though
many practical applications will probably use this operator with binary images.

The mask image may have a different size (hence, spatial sampling) than the image to
filter. In this case, nearest interpolation neighbour is used to map positions between
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input.tif labels.tif mask labels.tif

Figure 2: Masking a gray level image from a segmented image: operator mask. Com-
plete command to generate the output image: bip mask labels.tif input.tif.

the two images. This is typically useful when defining a mask at a coarse resolution
and applying it to another image at a higher resolution.

The mask image and the image to filter can also have different value types. This is
useful since mask images are typically 8-bit (when binary), while images to filter can
be of any type.

norm

This operator computes the norm of the input image. This operator is meaningful for
vector images only, i.e., images in which several values (samples in the TIFF nomen-
clature) are associated to each image position (such as gradient or FFT images). The
computed norm is the Euclidean (L2) norm:

∥x∥2 =

√√√√n−1∑
i=0

x2
i

projection avg|max|min

This operator performs the 2D projection of the input image along the Z direction. The
input image is assumed to be 3D. In the 2D case, the output is identical to the input.

The parameter of the operator specifies the projection mode. If set to avg, values are
averaged along the Z direction for each XY position. If set to max, the maximum value
along the Z direction is retained for each XY position (this also known as MIP, Maxi-
mum Intensity Projection). And yes, min does what you expect it does.

reslice x|rx|y|ry

This operator reslices the input image along the specified axis and direction. The image
is assumed to be 3D (the image is left unchanged by the operator otherwise). The
reslicing is controlled by the parameter passed to the operator:

x reslices the image from left to right;
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rx reslices the image from right to left;
y reslices the image from top to bottom;
ry reslices the image from bottom to top.

scale nearest|linear <factor>

This operator resizes the input image in all directions according to the specified scale
factor. The spatial calibration of the image is updated accordingly.

The first parameter of the operator specifies the interpolation mode. As a rule of
thumb, it is recommended to use the linearmode in all cases except when processing
binary or label images, for which averaging values is meaningless. For these images,
the parameter should be set to nearest (no interpolation).

resample nearest|linear <dx,dy[,dz]>

This operator resizes the input image using interpolation so that the resulting image
has the specified <dx,dy[,dz]> spatial calibration. When processing 2D images only,
dz can be omitted. Be warned, however, that dz defaults to 1.0, so that the voxel depth
of 3D images can be modified even if this argument is not specified.

Note that because of the discrete nature of digital images, it is not always possible to
obtain an output image with exactly the same spatial calibration as the one specified
by the user.

The first parameter of the operator specifies the interpolation mode. As a rule of
thumb, it is recommended to use the linearmode in all cases except when processing
binary or label images, for which averaging values is meaningless. For these images,
the parameter should be set to nearest (no interpolation).
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5 Filters

attenuation-correction [-p] ball|box <radius> <reference-slice>

This operator filters the input 3D image so as to correct the attenuation of signals with
depth, using Biot et al’s method (Biot et al., 2008). The method relies on the hypothesis
that the background of the image should be stationary. Hence, a background image is
estimated for each slice and a correction is computed to bring its background average
and standard-deviation to that of a reference slice. The background of each slice is
obtained by applying a morphological opening. The method is thus appropriate to
correct attenuation in image stacks containing relatively small objects such as spots.

The first two parameters of this operator control the morphological opening. See the
opening operator for details. The third parameter reference-slice is the index of
the slice taken as reference for the correction. It is generally taken as one of the first
slices in the image stack.

If the -p option is set, the per-slice average intensity profiles of the original image, of
its background estimated based on the morphological opening, and of the corrected
image are stored in a dataframe file. This can be used to plot and visualize the strength
of the attenuation and the quality of the correction.

gaussian-filter <sigma>

This operator filters the input image by replacing each value by a weighted average of
values over its neighbourhood, the weights being set according to a Gaussian function.
This is a classical linear filter that is in general used to attenuate noise.

The sigma parameter controls the shape of the Gaussian function. Though the neigh-
bourhood is theoretically infinite, it is truncated at ±3 sigma, where weights are be-
coming negligible relatively to the central position.

gaussian-gradient <sigma>

This operator computes the Gaussian gradient of the input image. The principle of
this operation is to apply a Gaussian smoothing followed by a differentiation along
each direction (the way it is implemented differs from this description for the sake of
efficiency). For a N -dimensional image (N = 2 or 3), the result is a vector image with
N values (samples in the TIFF nomenclature) corresponding to the N components of
the gradient (Figure 3).

The sigma parameter controls the shape of the Gaussian function used at the smooth-
ing stage (see gaussian-filter operator).

The Gaussian gradient is an approximate optimal edge detection filter (Canny, 1986).

This operator cannot be applied to multi-sample input images.
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input.tif gaussian-gradient 2 input.tif norm

Figure 3: Estimating image derivatives using the Gaussian gradient operator. The op-
erator generates a vector image of the gradient components (Middle). The gradient
norm is obtained by applying the norm operator to the vector image (Right).

local-inhibition-filter ball|box <radius>

This operator filters the input image by first setting to zero all values that are below
some proportion (scale parameter) of the maximal value of their neighbourhood. In a
second step, the obtained image is used as a marker for a geodesic reconstruction of
the input image, thus recovering original values for positions associated to significant
intensity peaks.

This operator is useful to remove intensity peaks that are considered not relevant in the
neighbourhood of relevant (and of higher intensity) peaks. It was initially developed
to remove artefacts in 3D-SIM images (Keller et al., 2024).

The first parameter of this filter specifies the shape of the neighbourhood. When set
to ball, circular (2D) or spherical (3D) neighbourhoods are used. When set to box,
square (2D) or cubic (3D) neighbourhoods are used. The size of the neighbourhood is
controlled by the radius parameter.

The scale parameter is fixed to 0.2 (may become an option in the future).

majority-filter ball|box <radius>

This operator filters the input image by replacing each value by the most represented
value in its neighbourhood. It is primarily intended to filter label images by removing
irregularities at the boundaries of labeled regions. Therefore, the value 0 is ignored.
An option may be added in the future to alter this behavior.

The first parameter of this filter specifies the shape of the neighbourhood. When set
to ball, circular (2D) or spherical (3D) neighbourhoods are used. When set to box,
square (2D) or cubic (3D) neighbourhoods are used. The size of the neighbourhood is
controlled by the radius parameter.

mean-filter ball|box <radius>

This operator filters the input image by replacing each value by the average value in its
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neighbourhood. This is a basic linear filter that is used in particular to attenuate noise.

The first parameter of this filter specifies the shape of the neighbourhood. When set
to ball, circular (2D) or spherical (3D) neighbourhoods are used. When set to box,
square (2D) or cubic (3D) neighbourhoods are used. The size of the neighbourhood is
controlled by the radius parameter.

median-filter ball|box <radius>

This operator filters the input image by replacing each value by the median value in its
neighbourhood. This is a basic non-linear filter that is used in particular to attenuate
noise. When applied to a binary image, it is equivalent to a local majority voting.

The first parameter of this filter specifies the shape of the neighbourhood. When set
to ball, circular (2D) or spherical (3D) neighbourhoods are used. When set to box,
square (2D) or cubic (3D) neighbourhoods are used. The size of the neighbourhood is
controlled by the radius parameter.

morphological-gradient ball|box <radius>

This operator computes the morphological gradient of the input image. The morpho-
logical gradient is the difference between the dilation (local maximum filter) and the
erosion (local minimum filter) of the image. One advantage of this operator over linear
gradient operators is to be less sensitive to variations in the local curvature of object
contours.

The first parameter of this operator specifies the shape of the neighbourhood (structur-
ing element) used in the dilation and erosion operations. When set to ball, circular
(2D) or spherical (3D) neighbourhoods are used. When set to box, square (2D) or cu-
bic (3D) neighbourhoods are used. The size of the neighbourhood is controlled by the
radius parameter.

plantseg [--config <config-file>] [--model <model-name>]

This operator runs a Convolutional Neural Network called PlantSeg (Wolny et al.,
2020) to enhance boundary signals in input images. It is typically applied before a
watershed transform on images of labelled cell membranes or walls to segment cells
within tissues.

PlantSeg is actually a 3D-Unet architecture (Falk et al., 2019) that has been pre-trained
on plant tissue images. Users should take care of having PlantSeg installed on their
system.

The default model has been trained on 3D confocal image stacks of Arabidopsis thaliana
ovules. A different model can be specified using the --model option.

prewitt-gradient
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This operator computes the Prewitt gradient of the input image. The Prewitt opera-
tor is a separable linear gradient operator with smoothing kernel 1 1 1 and derivative
kernel -1 0 1. In 2D, for example, the resulting kernel to compute the horizontal com-
ponent of the gradient is thus:

−1 0 1
−1 0 1
−1 0 1

The Prewitt gradient is generally of little interest on biological images. It is essentially
provided for historical and pedagogical reasons, and may be useful in very specific
applications.

sobel-gradient

This operator computes the Sobel gradient of the input image. The Sobel operator is a
separable linear gradient operator with smoothing kernel 1 2 1 and derivative kernel
-1 0 1. In 2D, for example, the resulting kernel to compute the horizontal component
of the gradient is thus:

−1 0 1
−2 0 2
−1 0 1

The Sobel gradient is generally of little interest on biological images. It is essentially
provided for historical and pedagogical reasons, and may be useful in very specific
applications.

unsharp-mask-filter <alpha> <sigma>

This operator filters the input image by performing an unsharp mask operation. This
operation consists in adding to the image some proportion of the difference between
the image and a smoothed version of it. The net effet is to enhance the local contrast
by making transitions at the boundary of objects sharper.

The parameter alpha controls the proportion of difference added to the original im-
age. Only positive values should be passed. The larger the value, the larger the contrast
enhancement. The parameter sigma is passed to the Gaussian filter used to smooth
the image. Its value should be adapted to the width of the transitions to be enhanced
(i.e., to the degree of blur in the input image).

variance-filter ball|box <radius>

This operator filters the input image by replacing each value by the variance of the
values in its neighbourhood. It may be used for example to enhance positions were
important intensity variations occur or can be used as a basic texture analysis tool.

The first parameter of this filter specifies the shape of the neighbourhood. When set
to ball, circular (2D) or spherical (3D) neighbourhoods are used. When set to box,
square (2D) or cubic (3D) neighbourhoods are used. The size of the neighbourhood is
controlled by the radius parameter.
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6 Segmentation operators

6.1 Intensity thresholding operators

threshold <threshold-value>

This operator performs a binarization of the input image by simple thresholding. Val-
ues that are strictly below the specified threshold-value in the input image are set
to 0 in the output image. Input values that are equal or above the threshold are set to
1.

otsu-thresholding

This operator performs a binarization of the input image by thresholding using a
threshold value automatically computed following Otsu’s method (Otsu, 1979). The
criterion for determining the best threshold is the separability between the two classes
defined by the threshold. In Otsu’s method, separability is formally defined as the ratio
between the between-class variance and the within-class variance. Intuitively, this cor-
responds to selecting a threshold that optimises simultaneously the contrast between
the two classes and the homogeneity within each class.

isodata-thresholding

This operator performs a binarization of the input image by thresholding using a
threshold value automatically computed following the method of Ridler and Calvard
(Ridler and Calvard, 1978). The method iterates separating the histogram into two
classes using the current threshold value, computing the class averages, and setting the
threshold for the next iteration as the middle point between the two averages. This is
a 1D version of the k-means algorithm (with k = 2), also known as Isodata algorithm.
This method is also related to Otsu’s method (Xue and Zhang, 2012), and generally
gives, at best, similar results.

unimodal-thresholding

This operator performs a binarization of the input image using a threshold value com-
puted according to the “triangle” method (Zack et al., 1977), also known as unimodal
thresholding (Rosin, 2001). As the name indicates, this method was designed to com-
pute intensity thresholds from histograms that do not exhibit strong bimodality, as is
the case when the objects of interest cover a small portion only of the image. Our imple-
mentation assumes objects are bright over a dark background. In the reverse situation,
the image should be inverted before computing the threshold. For example:

shell$ bip pipeline -e "invert auto | unimodal-thresholding"
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6.2 Watershed transform operators

watershed [-n 4,6|8,26]

This operator runs the classical watershed transform: starting from the regional min-
ima of the input image, labels are progressively growing as if (virtually) flooding the
image until they meet other labels.

The connectivity used for computing regional minima and for propagation in the wa-
tershed algorithm is set using the -n option. See Section 10.1 for more information
about the meaning and usage of this option.

To obtain relevant segmentation results with this operator, the input image should
have high intensity values at the interfaces between objects. Applying a gradient op-
erator is required if this is not the case, i.e., if the input image contains labelled objects
rather than labelled object boundaries.

h-watershed [-n 4,6|8,26] <h>

This operator runs the classical watershed transform after having filtered the input
image. The filtering operation aims at reducing the over-segmentation problem that is
frequently encountered when applying the classical watershed transform alone. The
filtering consists in removing from the image the minima that are not significant, i.e.,
whose depth is below the specified h-value.

Input image (16 bits) bip watershed bip h-watershed 5000

The connectivity used at the filtering step and for propagation in the watershed al-
gorithm is set using the -n option. See Section 10.1 for more information about the
meaning and usage of this option.

To obtain relevant segmentation results with this operator, the input image should
have high intensity values at the interfaces between objects. Applying a gradient op-
erator is required if this is not the case, i.e., if the input image contains labelled objects
rather than labelled object boundaries.

This operator is provided for convenience. It is equivalent to the following pipeline
(using h = 10 in this example):
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# converts image to 16-bit unsigned integer values
# (no effect if image is already 16-bit unsigned)
# and stores a copy for later retrieval in the pipeline
convert unsigned-short
store $image

# removes non-significant minima
extended-minima 10
store $emin
recall $image
minima-imposition $emin

# applies watershed on the filtered image
watershed -n 8,26

marker-watershed [-n 4,6|8,26] <marker-image>

This operator runs the watershed transform using user-specified seed for initialization.
The seeds, or marker, are used to pre-filter the input image and to remove regional
minima not corresponding to any seed.

The seeds are taken from marker-image. Any connected set of non-zero values in
this image is considered as a seed.

The connectivity used to define connected sets in the marker image and for propaga-
tion in the watershed algorithm is set using the -n option. See Section 10.1 for more
information about the meaning and usage of this option.

To obtain relevant segmentation results with this operator, the input image should
have high intensity values at the interfaces between objects. Applying a gradient op-
erator is required if this is not the case, i.e., if the input image contains labelled objects
rather than labelled object boundaries.

6.3 Label operators

labelling [-n 4,6|8,26]

This operator performs a labelling of the connected components in an image. A con-
nected component is a set of image positions within which any two positions can be
connected by a path that never passes by background positions. The background is de-
fined as the positions with value 0. These definitions of components and background
imply in particular that this operator can be applied to binary images as well as to
non-binary images. In the latter case, connected components are defined as sets of
connected non-null values.
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The connectivity used to define connected sets is set using the -n option. See Sec-
tion 10.1 for more information about the meaning and usage of this option.

condense-labels

This operator performs a renumbering of the labels in an image in order to obtain a
consecutive sequence of label numbers. This is useful for example when some labels
have been removed or merged. Applying this operator ensures in particular that the
maximal value in a label image equals the number of labeled objects.

Note that a call to the labelling operator is generally not equivalent to a call to the
condense-labels operator, as the first one would merge labels that are connected.
In addition, the second one runs faster than the first one, since it operates on label
values only and not on their spatial structure.

It is likely that users will use this operator almost exclusively on integer-type images.
If needed (for example to avoid type conversion within a pipeline), it should be noted
that it can as well be applied to real-type images, as long as the actual values are inte-
gers.

BIP makes no distinction between intensity and label images (this distinction is the
responsibility of the user). Hence, although this operator is primarily intended for
application on label images, it can also be applied to intensity images (though it is
unclear which situation would benefit from such processing).

6.4 Segmentation-related operators

isosurface [--rhc] <threshold-value>

This operator computes the isosurface at the specified value in an image. The isosur-
face is defined as the set of positions that take the specified value and is computed
using linear interpolation between voxel positions. It is represented as a triangular
mesh.

The output file format is the sviewer shape file format (.tm file).

By default, the output mesh is computed in a left-handed coordinate system. Use the
--rhc option to switch to a right-handed coordinate system.

6.5 Evaluation of segmentation results

label-errors split|merge|split-merge <reference-image>

This operator selects the labels corresponding to under- and over-segmentation errors
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in the input image compared to the specified reference image (Figure 5). The errors are
detected by first computing a forward mapping giving for each label of the reference
image the label that intersects most in the input image. Similarly, a backward mapping
is computed between the input image and the reference. An under-segmentation error
occurs when two or more labels of the reference image are mapped to the same label
in the input image. Reciprocally, an over-segmentation error occurs when two or more
labels of the input image are mapped to the same label in the reference image.

The first argument of the operator is used to select the type of error that is computed.
If set to split-merge, both under- and over-segmentation errors are computed. In
this case, the output image contains two channels. The first channel gives the labels of
the reference image that are under-segmented in the input image. The second channel
gives the labels of the input image that are splitting some labels in the reference image.

If the first argument is set to merge or split, only the corresponding type of error is
computed and the output image contains a single channel.

Restrictions: this operator cannot process multi-channel or multi-sample images.

Reference Input Under-segmentation
(mode = merge)

Over-segmentation
(mode = split)

Figure 5: Highlighting under- and over-segmentation errors with label-errors.
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7 Mathematical morphology

asf-closing-opening ball|box <first-radius> <last-radius>

This filter smooths the input image through a sequence of alternated closing and open-
ing operations, starting first with a closing. It is useful to smooth out noise or other
undesired structures when they cover a range of different scales and introduces less
distorsion than applying opening and closing with a large structuring element (Stern-
berg, 1986).

The first parameter of this filter specifies the shape of the neighbourhood (structuring
element) used in openings and closings. When set to ball, circular (2D) or spherical
(3D) neighbourhoods are used. When set to box, square (2D) or cubic (3D) neighbour-
hoods are used.

The radius of the neighbourhood is systematically varied step-by-step from first-radius
to last-radius. Hence, running this operator with a ball neighbourhood and with
first-radius set to 1 and last-radius set to 3 is equivalent to applying the fol-
lowing pipeline:

closing ball 1
opening ball 1
closing ball 2
opening ball 2
closing ball 3
opening ball 3

asf-opening-closing ball|box <first-radius> <last-radius>

This filter smooths the input image through a sequence of alternated opening and clos-
ing operations, starting first with an opening. It is useful to smooth out noise or other
undesired structures when they cover a range of different scales and introduces less
distorsion than applying opening and closing with a large structuring element (Stern-
berg, 1986).

The first parameter of this filter specifies the shape of the neighbourhood (structuring
element) used in openings and closings. When set to ball, circular (2D) or spherical
(3D) neighbourhoods are used. When set to box, square (2D) or cubic (3D) neighbour-
hoods are used. The radius of the neighbourhood is systematically varied step-by-step
from first-radius to last-radius.

binary-closing ball|box <radius>

This operator performs a binary morphological closing on the input image. The image
is supposed to be binary, with the background set to 0 and the foreground set to 1.
This operator provides the same result than the more general closing operator (see
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closing) but its implementation specific to binary images is more efficient.

The first parameter of this filter specifies the shape of the structuring element (neigh-
bourhood). When set to ball, circular (2D) or spherical (3D) structuring elements are
used. When set to box, square (2D) or cubic (3D) structuring elements are used. The
size of the structuring element is controlled by the radius parameter.

binary-dilation ball|box <radius>

This operator performs a binary morphological dilation on the input image. The image
is supposed to be binary, with the background set to 0 and the foreground set to 1.
This operator provides the same result than the more general dilation operator (see
max-filter) but its implementation specific to binary images is more efficient.

The first parameter of this filter specifies the shape of the structuring element (neigh-
bourhood). When set to ball, circular (2D) or spherical (3D) structuring elements are
used. When set to box, square (2D) or cubic (3D) structuring elements are used. The
size of the structuring element is controlled by the radius parameter.

binary-erosion ball|box <radius>

This operator performs a binary morphological erosion on the input image. The image
is supposed to be binary, with the background set to 0 and the foreground set to 1.
This operator provides the same result than the more general erosion operator (see
min-filter) but its implementation specific to binary images is more efficient.

The first parameter of this filter specifies the shape of the structuring element (neigh-
bourhood). When set to ball, circular (2D) or spherical (3D) structuring elements are
used. When set to box, square (2D) or cubic (3D) structuring elements are used. The
size of the structuring element is controlled by the radius parameter.

binary-inner-ring <width>

This operator computes the inner ring of objects in a binary image. The width param-
eter controls the size of the ring. The inner ring is defined as the part of objects that is
removed during their erosion (Figure 6):

InnerRing(I) = I − (I ⊖Bw)

where I ⊖Bw denotes the erosion of image I by a circular (2D) or spherical (3D) struc-
turing element Bw of radius w. Note that the inner ring includes the object contours.

binary-opening ball|box <radius>

This operator performs a binary morphological opening on the input image. The image
is supposed to be binary, with the background set to 0 and the foreground set to 1.
This operator provides the same result than the more general opening operator (see
opening) but its implementation specific to binary images is more efficient.
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Binary image inner-ring 15 outer-ring 20

Figure 6: Operators for binary mathematical morphology: inner and outer rings.

The first parameter of this filter specifies the shape of the structuring element (neigh-
bourhood). When set to ball, circular (2D) or spherical (3D) structuring elements are
used. When set to box, square (2D) or cubic (3D) structuring elements are used. The
size of the structuring element is controlled by the radius parameter.

binary-outer-ring <width>

This operator computes the outer ring of objects in a binary image. The width param-
eter controls the size of the ring. The outer ring is defined as the part of objects that is
added during their dilation (Figure 6):

OuterRing(I) = (I ⊕Bw)− I

where I ⊕ Bw is the dilation of image I by a circular (2D) or spherical (3D) structuring
element Bw of radius w. Note that the outer ring does not include object contours.

closing ball|box <radius>

This operator performs a morphological closing on the input image. Closing is a com-
bination of a dilation (see max-filter) followed by an erosion (see min-filter),
where the dilation and erosion are performed using the same structuring element. A
morphological closing fills dark holes that are smaller than the structuring element.
This operator can be applied to both binary and grey-level images.

The first parameter of this filter specifies the shape of the structuring element (neigh-
bourhood). When set to ball, circular (2D) or spherical (3D) structuring elements are
used. When set to box, square (2D) or cubic (3D) structuring elements are used. The
size of the structuring element is controlled by the radius parameter.

dilation-reconstruction [-n 4,6|8,26] <mask>

This operator performs the reconstruction by dilation of the specified mask from the
input image. The reconstruction by dilation is the geodesic dilation iterated until sta-
bility. The implementation follows the hybrid algorithm (Vincent, 1993b).

The connectivity used for propagation is set using the -n option. See Section 10.1 for
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more information about the meaning and usage of this option.

erosion-reconstruction [-n 4,6|8,26] <mask>

This operator performs the reconstruction by erosion of the specified mask from the in-
put image. The reconstruction by erosion is the geodesic erosion iterated until stability.
The implementation follows the hybrid algorithm (Vincent, 1993b).

The connectivity used for propagation is set using the -n option. See Section 10.1 for
more information about the meaning and usage of this option.

extended-maxima [-n 4,6|8,26] <h>

This operator computes the extended maxima of the input image. The extended max-
ima are the regional maxima of the h-maxima transform of the image. This transform
labels bright domains that are significant in the sense that their height is equal or larger
than specified h value.

The connectivity used in the algorithm is set using the -n option. See Section 10.1 for
more information about the meaning and usage of this option.

extended-minima [-n 4,6|8,26] <h>

This operator computes the extended minima of the input image. The extended min-
ima are the regional minima of the h-minima transform of the image. This transform
labels dark domains that are significant in the sense that their depth is equal or larger
than the specified h value.

The connectivity used in the algorithm is set using the -n option. See Section 10.1 for
more information about the meaning and usage of this option.

fast-binary-closing <radius>

This operator performs a binary closing on the input image. The structuring element
is a disk in 2D and a sphere in 3D. The output is the same as the one obtained with
the binary-closing operator using a ball as structuring element. However, the
fast-binary-closing operator runs in constant time (with regards to the size of
the structuring element). It is thus more efficient when using large structuring ele-
ments.

The radius parameter controls the size of the structuring element. It is expressed in
pixels (2D) or voxels (3D).

fast-binary-dilation <radius>

This operator performs a binary dilation on the input image. The structuring element
is a disk in 2D and a sphere in 3D. The output is the same as the one obtained with
the binary-dilation operator using a ball as structuring element. However, the
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fast-binary-dilation operator runs in constant time (with regards to the size of
the structuring element). It is thus more efficient when using large structuring ele-
ments.

The radius parameter controls the size of the structuring element. It is expressed in
pixels (2D) or voxels (3D).

fast-binary-erosion <radius>

This operator performs a binary erosion on the input image. The structuring element
is a disk in 2D and a sphere in 3D. The output is the same as the one obtained with
the binary-erosion operator using a ball as structuring element. However, the
fast-binary-erosion operator runs in constant time (with regards to the size of
the structuring element). It is thus more efficient when using large structuring ele-
ments.

The radius parameter controls the size of the structuring element. It is expressed in
pixels (2D) or voxels (3D).

fast-binary-opening <radius>

This operator performs a binary opening on the input image. The structuring ele-
ment is a disk in 2D and a sphere in 3D. The output is the same as the one obtained
with the binary-opening operator using a ball as structuring element. However,
the fast-binary-opening operator runs in constant time (with regards to the size
of the structuring element). It is thus more efficient when using large structuring ele-
ments.

The radius parameter controls the size of the structuring element. It is expressed in
pixels (2D) or voxels (3D).

h-maxima [-n 4,6|8,26] <h>

This operator computes the h-maxima transform of the input image. This transforms
filters out all peaks with height smaller than the specified h value. Other peaks are
preserved, but their altitude is decreased by h.

Note. The h-maxima transform of an image f is the geodesic reconstruction by dilation
of f from f − h: h-maxima(f) = Rδ

f (f − h). The implementation of the corresponding
algorithm takes care of possible numerical overflows when computing the difference
f − h.

The connectivity used in the reconstruction algorithm is set using the -n option. See
Section 10.1 for more information about the meaning and usage of this option.

h-minima [-n 4,6|8,26] <h>

This operator computes the h-minima transform of the input image. This transforms
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filters out all troughs with depth smaller than the specified h value. Other troughs are
preserved, but their depth is decreased by h.

Note. The h-minima transform of an image f is the geodesic reconstruction by erosion
of f from f + h: h-minima(f) = Rε

f (f + h). The implementation of the corresponding
algorithm takes care of possible numerical overflows when computing the sum f + h.

The connectivity used in the reconstruction algorithm is set using the -n option. See
Section 10.1 for more information about the meaning and usage of this option.

max-filter ball|box <radius>

This operator performs a morphological dilation on the input image using a flat struc-
turing element. This corresponds to a local maximum filter, where each position is
assigned the largest value observed over its neighbourhood. This operator can be ap-
plied to both binary and grey-level images.

The first parameter of this filter specifies the shape of the structuring element (neigh-
bourhood). When set to ball, circular (2D) or spherical (3D) structuring elements are
used. When set to box, square (2D) or cubic (3D) structuring elements are used. The
size of the structuring element is controlled by the radius parameter.

min-filter ball|box <radius>

This operator performs a morphological erosion on the input image using a flat struc-
turing element. This corresponds to a local minimum filter, where each position is
assigned the smallest value observed over its neighbourhood. This operator can be
applied to both binary and grey-level images.

The first parameter of this filter specifies the shape of the structuring element (neigh-
bourhood). When set to ball, circular (2D) or spherical (3D) structuring elements are
used. When set to box, square (2D) or cubic (3D) structuring elements are used. The
size of the structuring element is controlled by the radius parameter.

opening ball|box <radius>

This operator performs a morphological opening on the input image. Opening is a
combination of an erosion (see min-filter) followed by a dilation (see max-filter),
where the dilation and erosion are performed using the same structuring element. A
morphological opening removes bright objects that are smaller than the structuring
element. This operator can be applied to both binary and grey-level images.

The first parameter of this filter specifies the shape of the structuring element (neigh-
bourhood). When set to ball, circular (2D) or spherical (3D) structuring elements are
used. When set to box, square (2D) or cubic (3D) structuring elements are used. The
size of the structuring element is controlled by the radius parameter.
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regional-maxima [-n 4,6|8,26]

This operator computes the regional maxima in the input image. A regional maximum
is a connected set of positions that share the same value and for which neighbours not
included in the set have strictly smaller values.

In the output image, positions not belonging to regional maxima are set to the lowest
value of the image numerical type. Positions in regional maxima keep their original
(input) value. This behaviour may change in the future.

The connectivity used when computing connected components is set using the -n op-
tion. See Section 10.1 for more information about the meaning and usage of this option.

regional-minima [-n 4,6|8,26]

This operator computes the regional minima in the input image. A regional minimum
is a connected set of positions that share the same value and for which neighbours not
included in the set have strictly higher values.

In the output image, positions not belonging to regional minima are set to 0. Positions
in regional minima are assigned the maximum value of the image numerical type. This
behaviour may change in the future.

The connectivity used when computing connected components is set using the -n op-
tion. See Section 10.1 for more information about the meaning and usage of this option.

size-closing [-n 4,6|8,26] <size>

This operator performs a closing by size attribute on the input image. When applied to
a binary image, this operator fills all the background components with size below the
specified threshold. When applied to a grey-scale image, this operator assigns to each
position the smallest value at which the position still belongs to a connected trough
component of size equal or above the specified threshold. This operator is in particular
useful to filter images containing thin or elongated structures (Vincent, 1993a).

The implemented algorithm is a corrected but close to literal version of the union-find
algorithm described in (Meijster and Wilkinson, 2002).

The connectivity used for propagation is set using the -n option. See Section 10.1 for
more information about the meaning and usage of this option.

size-opening [-n 4,6|8,26] <size>

This operator performs an opening by size attribute on the input image. When applied
to a binary image, this operator selects all the components with size equal or above
the specified threshold. When applied to a grey-scale image, this operator assigns to
each position the highest value at which the position still belongs to a connected peak
component of size equal or above the specified threshold. This operator is in particular
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useful to filter images containing thin or elongated structures (Vincent, 1993a).

The implemented algorithm is a corrected but close to literal version of the union-find
algorithm described in (Meijster and Wilkinson, 2002).

The connectivity used for propagation is set using the -n option. See Section 10.1 for
more information about the meaning and usage of this option.

toggle-filter ball|box <radius>

This filter performs local contrast enhancement using mathematical morphology oper-
ators (Kramer and Bruckner, 1975). Each position is assigned its corresponding value
in the eroded or in the dilated image, depending on which one is the closest to its
original (input) value.

The first parameter of this filter specifies the shape of the structuring element (neigh-
bourhood) used in the dilation and erosion operations. When set to ball, circular (2D)
or spherical (3D) structuring elements are used. When set to box, square (2D) or cubic
(3D) structuring elements are used. The size of the structuring element is controlled by
the radius parameter.

tophat-black ball|box <radius>

This operator applies the top-hat transform (“black” version) to the input image, ob-
tained by subtracting the original image to the result of its closing by a structuring
element. This operation achieves a background removal in situations where the back-
ground is brighter (higher intensities) than the objects of interest. The structuring ele-
ment should be taken as least as large as the objects of interest. Objects larger than the
structuring element will be lumped into the background by this operation.

The first parameter of this operator specifies the shape of the structuring element
(neighbourhood) used in the opening operation. When set to ball, circular (2D) or
spherical (3D) structuring elements are used. When set to box, square (2D) or cubic
(3D) structuring elements are used. The size of the structuring element is controlled by
the radius parameter.

tophat-white ball|box <radius>

This operator applies the top-hat transform (“white” version) to the input image, ob-
tained by subtracting to the original image the result of its opening by a structuring
element. This operation achieves a background removal in situations where the back-
ground is darker (lower intensities) than the objects of interest. The structuring ele-
ment should be taken as least as large as the objects of interest. Objects larger than the
structuring element will be lumped into the background by this operation.

The first parameter of this operator specifies the shape of the structuring element
(neighbourhood) used in the opening operation. When set to ball, circular (2D) or
spherical (3D) structuring elements are used. When set to box, square (2D) or cubic

32



(3D) structuring elements are used. The size of the structuring element is controlled by
the radius parameter.

ultimate-erosion [-n 4,6|8,26]

This operator computes the ultimate eroded set of the input image. When progres-
sively eroding a binary image, the ultimate eroded set is defined as the union of the
connected component that disappear at each erosion step. In practice, the ultimate
eroded is computed as the regional maxima of the distance transform of the input im-
age (Soille, 2003). In our implementation, the output image contains the values of the
distance transform in the ultimate eroded set.

The connectivity used to define the neighbourhood system when computing the con-
nected components is set using the -n option. See Section 10.1 for more information
about the meaning and usage of this option.
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8 Analysis operators

8.1 Label operators

clean-borders [-l]

This operator removes the image contents touching the borders. This is obtained by
subtracting from the input image its morphological reconstruction from the border.
The operator can be applied to both intensity and label images; however, its typical
application is the removal of segmented objects that intersect the image border.

The -l option must be used when processing label images.

click-select [-d max-distance] <positions.vx>

This operator selects labels in the input image based on specified positions. The algo-
rithm works by determining for each position the closest label, i.e. the label having the
pixel/voxel closest to the specified position. Proximity is measured using Euclidean
distance, taking into account the spatial calibration of the image.

The file <positions.vx> contains the positions to be used for the selection, follow-
ing the sviewer in-house shape file format. The positions should be defined in the
physical space of the image.

The -d option allows to set a maximum distance, above which labels are simply ig-
nored.

click-replace [-d max-distance] <positions.vx> <new-value>

This operator replace labels in the input image based on specified positions. The al-
gorithm works by determining for each position the closest label, i.e. the label having
the pixel/voxel closest to the specified position, and replaces this label by a new value.
Proximity is measured using Euclidean distance, taking into account the spatial cali-
bration of the image.

The file <positions.vx> contains the positions to be used for the selection, follow-
ing the sviewer in-house shape file format. The positions should be defined in the
physical space of the image. The parameter <new-value> specifies the value to assign
to the selected labels.

The -d option allows to set a maximum distance, above which labels are simply ig-
nored.

label-boundaries [--add]

This operator computes the boundaries between labels in an image. By default, the
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output is a binary image of the boundaries. If the --add option is specified, the bound-
aries are overlaid to the labels of the input image.

Input image label-boundaries label-boundaries
--add

replace largest|<label>[,<label2>,...,<labelN>] <new-value>

This operator replaces one or several label values in an image by another value. Several
values to be replaced can be specified using a comma-separated list of values.

The keyword largest can be used anywhere in the list to refer to the label that is the
most represented in the image. Remind that 0 is not considered as a label value, which
implies that the background cannot be selected as the largest label.

select [-r <range>] largest|max|<label>[,<label2>,...,<labelN>]

This operator selects one or several labels in an image. All values not appearing in the
specified list are set to 0. The values of the listed labels are left unchanged.

The option -r can be used to set the range of neighbours to be included in the selec-
tion. For example, specifying -r 1 also includes in the selection all the immediate
neighbours of the specified labels. Only first-order neighbourhood is supported in the
current implementation.

The keyword largest can be used anywhere in the list to refer to the label that is the
most represented in the image. Remind that 0 is not considered as a label value, which
implies that the background cannot be selected as the largest label.

Similarly, the keyword max can be used anywhere in the list to refer to the label with
the largest value in the image.

To select the background of a label image (i.e., to obtain a binary mask of the back-
ground alone), one should use for example the following pipeline:

shell$ bip pipeline -e "threshold 1 | invert auto" image.tif
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select-fringe

This operator selects the labels located at the fringes in a segmented image. A label is
a fringe label if the graph of its neighbours is not cyclic. Note that this is not system-
atically the same as outer labels (labels having contacts with the background). Outer
labels are not necessarily fringe labels. Conversely, fringe labels will generally be outer
labels, but there are rare configurations where they may not.

In practice, users will probably need the select-outer operator for most applica-
tions. The select-fringe operator will be particularly useful to select the outer rim
of a cell layer in 3D.

select-outer

This operator selects the outer labels in a segmentation. A label is an outer label if it
contacts the image background. Note that this is not systematically the same as fringe
labels. Outer labels are not necessarily fringe labels. Conversely, fringe labels will
generally be outer labels, but there are rare configurations where they may not.

select-inner

This operator selects the inner labels in a segmentation. A label is an inner label if it is
not in contact with the image background. The set of obtained labels is the complement
of those obtained with operator select-outer.

shuffle-labels

This operator randomly shuffles the label values in an image. The background (label
value 0) is left unchanged. This operator is for example useful to modify the contrast at
the boundaries between the labeled objects (both when displaying labels as gray levels
or as false colors).

Input image select 76,160,261 select -r 1
76,160,261

Figure 8: Selection of labels and of their immediate neighbours.
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Input labels (2D) select-fringe

Input labels (3D) select-fringe

split [-h <tolerance>]

This operator separates objects that are touching each other in a binary image. The
optional tolerance parameter can be set to control the degree of separation (default
tolerance value is 0.5). The higher the tolerance, the less the objects are split (Figure 12).

The split operator can also process label images of segmented objects. In this case,
the original labelling is lost because a thresholding of values above 0 is applied as a
first step in this operator.

swap-labels <list1> <list2>

This operator swaps values in an image. The values to swap are specified by two
lists of comma-separated values. The two lists must have the same size. All image
positions having a value from list1 are assigned the corresponding value in list2,
and reciprocally.

label-defragmentation [-n 4,6|8,26]

This operator takes as input a label image in which each label may appear as several
connected components. The operator retains the largest component for each label and
removes all the other ones. The discarded components are removed by filling the holes
they make in the largest components of other labels.
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Input image (2D) select-outer

Input image shuffle-labels

The connectivity used to define connected sets is set using the -n option. See Sec-
tion 10.1 for more information about the meaning and usage of this option.

zmap [-l]

This operator performs a Z-front detection in the input 3D label image. Z-front detec-
tion is a 2D projection of the 3D image: at each XY position, it determines and retains
the first Z position with a non-null value. Used in conjunction with the reverse op-
erator izmap, this operator is typically used to extract the uppermost layer in a label
image.

If the -l option is set (“label mode”), then the operator retains the first encountered
label rather than its Z position.

8.2 Distance maps

chamfer-distance <foreground>

This operator computes an integer-valued map of the approximate distance between
each image position and the closest position with value foreground. The input image
is not necessarily binary, as every non-foreground position will be considered as back-
ground. The implementation follows algorithms given by Borgefors (Borgefors, 1986;
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Binary image split split -h 5

Figure 12: Separating touching objects using the split operator.

Borgefors, 1996).

This operator is provided for historical reasons mainly. Users will in general opt in-
stead for the Euclidean distance operator, which is very efficient and provides exact
values.

euclidean-distance [--physical] <foreground>

This operator computes a real-valued map of the exact Euclidean distance between
each image position and the closest position with value foreground. The input image
is not necessarily binary, as every non-foreground position will be considered as back-
ground. The implementation is based on Felzenszwalb and Huttenlocher’s algorithm
(Felzenszwalb and Huttenlocher, 2012) that we have modified to take into account the
spatial calibration of the image.

By default, the distance is computed in pixels (2D) or voxels (3D). If the --physical
option is set, the distance is instead computed in physical units, taking into account
the spatial calibration of the image and its anisotropy, if any.

The numerical type of the output image is 32-bit floating point.

Input image euclidean-distance
255

euclidean-distance 0
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8.3 Measurements

region-analysis [-p parameter[,parameter2,. . . ,parameterN]]

This operator performs quantitative measurements on objects in a labelled image. Each
label in the input image is considered as defining an object. In practice, an object will
generally correspond to a unique connected component in the input label image, but
BIP imposes no restriction on the number of components per object.

By default, BIP performs measurements for all implemented parameters. This be-
haviour can be overridden by using the -p option to specify a comma-separated list of
desired parameters. For example, the following call will only measure the number of
voxels, the volume and the sphericity of objects in a 3D image:

shell$ bip region-analyis -p count,volume,sphericity image.tif

Available parameters in BIP fall into one out of three categories. Most parameters
are simple parameters, for which a single numerical value is obtained (e.g., area).
Table 3 lists the available simple parameters. Some other parameters are vector pa-
rameters, which provide several values corresponding to as many simple parameters
that are components of a vector (such as a position or a direction). One example is
the centroid parameter, which provides on output 2 or 3 parameters (centroid-x,
centroid-y and centroid-z), corresponding to the coordinates of the average po-
sition of an object. Lastly, group parameters are short-cuts for specifying groups of
related simple or vector parameters, without having to specify each parameter indi-
vidually. For example, asking for the size parameter triggers the measurements of
the count, area, and volume parameters. Table 4 lists the available vector and group
parameters.

On output, BIP writes a region-analysis.df file, which obeys a tsv format (columns
of measured values separated by tabulations). This file can be loaded in software such
as Excel, LibreOffice Calc, gnuplot, or R for downstream statistical analysis and graph-
ical plotting.

As a for most BIP operators, both 2D and 3D images can be passed upon a same call to
the region-analysis operator. Some parameters are defined in both 2 and 3 dimen-
sions (such as count, the number of times the label is observed in the image), while
others are specific to either the 2D (such as area) or the 3D case (such as volume). BIP
reports a NaN (not-a-number) value in the output file for undefined parameters.

Images with multiple channels and/or multiple timepoints can be passed to the op-
erator, in which case labelled regions will be quantified in the different channels and
time frames. A channel column is added in the output file in case the input image
contains several channels. Similarly, a timepoint column is added in the output file
in case the input image contains several timepoints. Images with different numbers of
channels or timepoints can be mixed during a same call.
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Parameter Definition Dimension

Size measurements
area Object area in physical units 2D
count Number of pixels (2D) or voxels (3D) 2D,3D
volume Object volume in physical units 3D
equiv-radius Radius of disk (or sphere) of same area (volume) 2D,3D
major-radius Radius along the first principal axis 2D,3D
medium-radius Radius along the 2nd principal axis 3D
minor-radius Radius along the smallest principal axis 2D,3D
gyration-radius Root mean squared distance to object centroid 2D,3D
perimeter Length of the object boundary 2D
surface-area Surface area of the object boundary 3D
box-diagonal Diagonal of the axis-aligned bounding box 2D,3D

Position measurements
centroid-x Centroid: x-coordinate 2D,3D
centroid-y Centroid: y-coordinate 2D,3D
centroid-z Centroid: z-coordinate 3D
box-x1 Axis-aligned bounding box: x-coordinate of 1st corner 2D,3D
box-y1 Axis-aligned bounding box: y-coordinate of 1st corner 2D,3D
box-z1 Axis-aligned bounding box: z-coordinate of 1st corner 3D
box-x2 Axis-aligned bounding box: x-coordinate of 2nd corner 2D,3D
box-y2 Axis-aligned bounding box: y-coordinate of 2nd corner 2D,3D
box-z2 Axis-aligned bounding box: z-coordinate of 2nd corner 3D

Orientation measurements
major-vector-x Largest principal axis: x-coordinate 2D,3D
major-vector-y Largest principal axis: y-coordinate 2D,3D
major-vector-z Largest principal axis: z-coordinate 3D
minor-vector-x Smallest principal axis: x-coordinate 2D,3D
minor-vector-y Smallest principal axis: y-coordinate 2D,3D
minor-vector-z Smallest principal axis: z-coordinate 3D
medium-vector-x Intermediate principal axis: x-coordinate 3D
medium-vector-y Intermediate principal axis: y-coordinate 3D
medium-vector-z Intermediate principal axis: z-coordinate 3D

Shape measurements
elongation Length-ratio between largest and intermediate axes 2D,3D
flatness Length-ratio between intermediate and smallest axes 3D
circularity Matching with a disk having the same area 2D
sphericity Matching with a sphere having the same volume 3D
globularity (Experimental) 2D,3D

Topological measurements
degree Number of neighbouring labels 2D,3D
outer Indicator of contact with the background 2D,3D
fringe Indicator of localization at the periphery of the tissue 2D,3D
layer Number of the containing tissue layer 2D,3D

Table 3: Simple parameters available in BIP. Dimension indicates in which dimen-
sion(s) each parameter is defined. Parameters not defined for a given dimension will
appear as NaN in the measurement file.
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Composiite parameter Definition Associated simple parameters
centroid Object average position centroid-x,

centroid-y,
centroid-z

size Object size count, area, volume
box Axis-aligned bounding box box-x1, box-y1, box-z1,

box-x2, box-y2, box-z2,
box-diagonal

Table 4: Composite and meta-parameters available in BIP.

8.4 Export operators

export-bboxes

This operator computes the bounding boxes of the labelled regions in the input image.
The coordinates of the bounding boxes are expressed in the physical space (i.e., taking
into account the spatial calibration of the image). For each label, the corresponding
box is stored in a file named by appending the label to the input filename. The channel
and the timepoint are also added to the filename if the input image contains several
channels or timepoints. The output file format is Free-D’s shape viewer format.

export-shapes [--stl]

This operator computes the triangular meshes corresponding to the boundaries of la-
belled regions in a 3D image. One mesh is computed for each label and stored in a file
named by appending the label to the input image filename. The mesh is obtained by
applying the Marching Cubes algorithm (Lorensen and Cline, 1987) to the binary mask
of the label.

The default output file format is the sviewer shape file format (.tm files). You can switch
to the STL file format using the --stl option.

export-rag

This operator computes the region adjacency graph of the input image and saves it in
a format suitable for opening with sviewer, the Free-D’s standalone 3D shape viewer.

In the RAG, each labelled region of the input image is represented by a node placed
at the centroid (geometrical center) of the region. The nodes that correspond to neigh-
bouring regions are connected by edges.
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Input labels (3D) export-rag
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9 Pipelines

BIP pipelines have two purposes. First, they simplify and accelerate the design and
the application of image processing sequences composed of several steps. Second,
they also facilitate tracing the operations that have been applied to images.

9.1 Writing and using pipeline files

Consider the following 3-step sequence: Gaussian filtering, Otsu’s thresholding, and
object labelling. Without pipelines, the corresponding commands to enter into the
terminal would be:

shell$ bip gaussian-filter 1.0 image.tif
shell$ bip otsu-thresholding image-gaussian-filter.tif
shell$ bip labelling image-gaussian-filter-otsu-thresholding.tif

This is long, both to type and to execute because of writing/reading operations of
intermediate files. This is also error-prone when applying this sequence to different
files and at different times. In addition, though the intermediate files generated by
such a sequence may be of interest at the design stage, they are generally of no
interest in routine application. Using a pipeline can address all these issues at once.

To use a pipeline with BIP, you first create a text file containing the sequence of
operations to apply. The file can also contain comments (pieces of text starting with
the ’#’ character, which are ignored by BIP). For the above sequence, one would write
the following code and save it to a file named, for example, process.pipeline:

# contents of process.pipeline
gaussian-filter 1.0
otsu-thresholding
labelling

Importantly, note how the syntax is identical to the one used when invoking
operators one-by-one on the command line. This feature enables users to rapidly
write pipelines as soon as they have learn to use BIP in simple command-line mode.

To apply a pipeline, one invokes the pipeline operator with the corresponding file:

shell$ bip pipeline process.pipeline image.tif

When running a pipeline, the name of the output file for each input image is obtained
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by concatenating the input image filename with the basename of the pipeline file. In
our example, the result would be stored in image-process.tif.

Of course, pipelines can be applied in batch as any other operator:

shell$ bip pipeline process.pipeline ../input/*.tif

9.2 Pipelines without pipeline files

In some applications, it may happen that short pipelines have to be applied and/or
that keeping trace of the applied pipelines into text files is not required. In these cases,
writing pipeline files may be cumbersome. BIP allows defining pipelines upon
invocation of the pipeline operator.

Pipeline expressions are used to define pipelines upon invocation of the pipeline
operator in the command-line. As in pipeline files, the syntax in pipeline expressions
is identical to the syntax used to invoke operators individually. The only specificity in
expression syntax is that the successive operators are separated by the ’|’ symbol
(a.k.a. pipe operator under Unix/Linux). The whole expression should be enclosed
within a pair of quotes.

The -e option of the pipeline operator is used to specify a pipeline expression
instead of a pipeline file. Using a pipeline expression, our sample pipeline above
would thus be applied using the following call:

shell$ bip pipeline -e "gaussian-filter 1.0 | \
otsu-thresholding | labelling" image.tif

9.3 Pipeline variables

It is frequent that a pipeline does not consist in a purely sequential set of operations
but instead requires that different images undergo different operations before being
combined. As a prototypical example, consider the morphological tophat, defined for
an image I as:

tophat(I) = I − opening(I)

(note this is a purely pedgogical example, as BIP provides a native tophat-white
operator that implements this operation). In a pipeline, the opening step (here, using
a circular structuring element of radius 2) can be computed by writing
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opening-filter ball 2

The problem is that after the execution of this pipeline line, the initial image is lost.
This shows that two images are needed to compute the tophat: one to store the
original image and another to store the opening of this image. Hence, we need to
create a copy of the original image that can be retrieved after having computed the
opening.

This is where variables come into play. Remember that the image to which the
operators are applied in a pipeline is implicit. A variable is a name that designates
this current image at a given step, the step corresponding to the point where the
variable is declared. A variable declaration consists of the keyword store followed
by the variable name, preceded by the special character ’$’:

store $<variable-name>

The current image in a pipeline can be set to a previously stored image by invoking
the recall operator followed by the corresponding variable name:

recall $<variable-name>

In the tophat example, we need to create a variable to store the input (= current image
at the beginning of the pipeline) image before computing its opening. We then recall
the original image and subtract the opening. This yields the following pipeline:

# save a copy of the input image somewhere in memory
store $image

# replace current image by its morphological opening
# and store the result somewhere in memory
opening ball 2
store $opening

# set the current image to the previously stored input image
recall $image

# subtract the morphological opening from the current image
substract $opening
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10 Advanced usage

10.1 Neighbourhood systems and connectivity

Many BIP operators have a -n option to set the connectivity of the neighbourhood
system used. When passing 4, 6, or 4,6 as a value for this option, a Von Neumann
neighbourhood is used: the neighbours of a pixel or voxel are connected to it by edges
parallel to the image XYZ axes (stated otherwise, each neighbour differs by only one
coordinate from the center of the neighbourhood). When passing 8, 26, or 8,26, a
Moore neighbourhood is used instead (diagonal pixels or voxels are also neighbours).

There is absolutely no difference between the three possibilities for specifying a
neighbourhood system. For example, all three values 8, 26, and 8,26 will impose
8-connectivity in 2D and 26-connectivity in 3D. The three possibilities are essentially
offered for clarity and consistency. To process 2D images, one would certainly write:

shell$ bip labelling -n 8 image2D-A.tif image2D-B.tif

and to process a mix of 2D and 3D images, one may write:

shell$ bip labelling -n 8,26 image2D-A.tif image3D-C.tif

but the result would be the same by calling, for example:

shell$ bip labelling -n 26 image2D-A.tif image3D-C.tif

Lastly, note the default connectivity is 4 (2D)/6 (3D). Hence, the 4, 6, and 4,6 option
values are essentially provided for clarity and for making explicit the choice of the
neighbourhood system.

10.2 Pattern substitutions on file and directory names

Several BIP operators are binary operators: they take as input two images, the current
image to process and an additional image required for the processing of the current
image. A typical example is the mask operator, in which a mask image is used to set
to zero all values in the input image that are outside the defined mask. Some
operators also take as input additional files that are not images. A typical example is
the click-select operator, which takes as input a file of selected positions.
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sample1.tif

sample2.tif

sample3.tif

sample1.tif

sample2.tif

sample3.tif

sample1-mask.tif

sample2-mask.tif

sample3-mask.tif

masks objects results

Figure 15: Matching processed image files with additional files (simple situation). Each
input image in the objects folder has a corresponding mask image in the masks
folder. Specifying the masks folder is sufficient for BIP to associate each object image
to its corresponding mask. The following command was run from the results folder:
bip mask ../masks ../objects/*.

Under a well-designed file nomenclature, any additional file (image or else) should
have a name that can be automatically constructed from the filename of the currently
processed image. For example, a mask could be stored in a masks folder under the
same filename as the current image, or with a suffix such as *-mask.tif.

BIP features a pattern substitution mechanism based on regular expressions to
automatically construct, from the currently processed image filename, the name of an
associated additional file. Pattern substitution allows to replace parts of a filename by
some specific pattern. It also allows to remove or add some parts. The position (begin,
end, or anywhere) of replacement, removal, and insertion can be specified.

The simplest situation is when no substitution is needed, because additional files are
stored in some directory under the same filenames as the processed images
(Figure 15). It is then sufficient to specify the path to this directory. For example:

shell$ bip mask ../masks ../inputs/*

Another typical situation is when the processed images and their associated
additional files correspond to different fluorescence channels indicated in filenames
(e.g., with "c02" and "c01" tags; see Figure 16). In this case, the "c02" pattern in the
input filenames has to be replaced by "c01" to associate the processed images to their
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sample1-c01.tif

sample2-c01.tif

sample3-c01.tif

sample1-c02.tif

sample2-c02.tif

sample3-c02.tif

sample1-c02-mask.tif

sample2-c02-mask.tif

sample3-c02-mask.tif

masks objects results

Figure 16: Matching processed image files with additional files (typical situation). Each
input image in the objects folder has a corresponding mask image in the masks
folder. The only difference in filenames is the channel suffix. A pattern substitution
has to be given with the masks folder name to ensure BIP associates each object image
to its corresponding mask. The following command was run from the results folder:
bip mask ../masks:s/02/01 ../objects/*.

respective additional files:

shell$ bip mask ../masks:s/c02/c01/ ../inputs/*

Note how the substitution pattern is separated by a ’:’ character from the directory
name. The pattern itself is composed of three parts separated by slashes (’/’): (1) a
letter designing an action to perform, here ’s’ for substitution; (2) a regular expression
specifying the pattern to match, here the "c02" substring; (3) the motif with which the
occurrences of the searched pattern should be replaced, here "c01".

A specific position of the matching pattern in the input filename can be specified
using the ’ˆ’ (begin) or ’$’ (end) characters. For example, "s/tif$/vx/" is used to
replace the .tif extension of an image by the .vx extension of a file listing a set of
positions from which to operate some operation (see, for example, click-select).
Similarly, "s/ˆ/mask-/" is used to add the prefix mask- to the image filename.

Several substitutions patterns can be specified at the same time, in which case each
pattern should be separated from the previous one by a comma. For example, the call:
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shell$ bip mask ../masks:s/c02/c01/,s/^/mask-/ ../inputs/*

would look, for each input image, for an associated image in the masks directory
with the same filename, prefixed by mask- and in which the substring c02 would be
replaced by c01.

11 Global options

-u

This options disables compression of output files. This is useful when fast file writing
(and subsequent reading) is required, given that compressing and decompressing
data upon file writing and reading induces a computational cost that can be
significant with large images. This option is also useful when writing images that are
intended to be loaded into other software that, like ImageJ/Fiji, are not very efficient
in loading compressed TIF files.

-f

This option allows BIP to overwrite existing files. This is useful when calling BIP
repeatedly on the same inputs, for example when testing different pipelines or
operator values. By default, BIP will not overwrite any existing file and will generate
an error when attempting to write over an existing file.

In the example below, the second call generates an error because an output file has
already been created in the current directory by the first call:

shell$ bip gaussian-filter 1.0 ../input/image.tif
shell$ bip gaussian-filter 1.0 ../input/image.tif
shell$ *** error: Exception raised:
shell$ What: File already exists
shell$ Where: void ImageWriter::write(...)
shell$ Calls: [0] void ImageWriter::write(...)
shell$ Filename: image-gaussian-filter.tif

With the -f option, the file created upon the first call is silently overwritten:

shell$ bip gaussian-filter 1.0 ../input/image.tif
shell$ bip -f gaussian-filter 1.0 ../input/image.tif
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--no-suffix

This option removes the suffix (name of applied operator) that is automatically added
to filenames when writing output files. Hence, using this option results in having
identical filenames for input and for output images. Beware that using this option in
conjunction with the -f option can be very dangerous, as permanent loss of files may
result. To avoid loosing precious data, it is highly recommended to never run BIP
within a folder containing input images.

--long-suffix

This option asks BIP to use long suffixes instead of just operator names as suffixes.
Long suffixes typically contain values of operator values. This is useful for example to
store the results obtained with different parameter settings for a given operator.
Without this option, only one output could be stored without further file
manipulation.

For example, the second call below generates an error:

shell$ bip median-filter ball 1 ../input/image.tif
shell$ bip median-filter ball 2 ../input/image.tif
shell$ *** error: Exception raised:
shell$ What: File already exists
shell$ Where: void ImageWriter::write(...)
shell$ Calls: [0] void ImageWriter::write(...)
shell$ Filename: image-median-filter.tif

Using --long-suffix, no error is generated:

shell$ bip --long-suffix median-filter ball 1 ../input/image.tif
shell$ bip --long-suffix median-filter ball 2 ../input/image.tif

Indeed, two distinct files have been created:

image-median-filter-ball-1.tif
image-median-filter-ball-2.tif

--gen-completion-script

(Linux) With this option set, BIP generates a bash completion script and immediately
returns. The generated file is to be moved to, or copied into, the .bash_completion
file in the user home directory. This provides the tab-completion functionality on BIP
operator names.
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-B <background>

This option sets the background value for many operators that rely on a distinction
between background and foreground. Examples include thresholding operators and
operators for binary mathematical morphology.

The default background value is 0.

-F <foreground>

This option sets the foreground value for many operators that rely on a distinction
between background and foreground. Examples include thresholding operators and
operators for binary mathematical morphology.

The default foreground value is 1.
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12 Project-specific operators

live-track <config> <target>

This operator computes the registration of the input image on the specified target
image. This operator is designed to be invoked from macros or scripts in Zen
software on Zeiss microscopes during time-lapse acquisitions to allow adjusting the
position of the microscope stage during acquisition.

The registration is performed using a simple translation. The optimal translation is
determined by maximizing the cross-correlation between the input image and the
target image. No interpolation is performed on the cross-correlation, so that the raw
translation components are integer values.

The config file specifies the configuration to be used for the registration. This file
follows the json format. The minimum configuration contains the following tags:

{
"pipeline" : "default",
"source-channel" : 0,
"target-channel" : 0,
"source-timepoint" : 0,
"target-timepoint" : 0

}

The pipeline tag is used to specify the preprocessing pipeline to apply to the input
images before computing the registration. This typically includes projection from 3D
stacks to 2D images and noise filtering. The name of the pipeline does not refer to a
text file (as in the pipeline operator) but designates instead a hard-coded sequence
of operations. The only possible value at the moment for the pipeline tag is
default, which is adapted to the preprocessing of fluorescently labelled growing
roots. Other values will be added in the future to select other processing pipelines
adapted to other organs and imaging conditions. It is likely that in future versions,
registration criteria and registration algorithms will differ between pipelines, as
cross-correlation maximization may not cover the full range of targeted applications.

The source-channel and target-channel tags specify the indexes of the image
channels to use for computing the registration. They should be set to 0 for
mono-channel images. Note the channels may differ between source and target.
Though it is not expected to be useful in many situations, this feature is introduced to
support flexibility in future applications.

The source-timepoint and target-timepoint tags specify the indexes of the
image timepoints to use for computing the registration. If images acquired at different
timepoints during a time-lapse acquisition are stored in separate files containing each
a single timepoint, these attributes will be set to 0. If the images are stored in a single
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file containing all timepoints, then these attributes will typically take consecutive
values (first call with 1 and 0, second with 2 and 1, etc.). However, non-consecutive
values can be specified in case registration is invoked at arbitrary intervals across
acquisitions instead of being called upon each acquisition.

The operator outputs a .json file reporting the components of the computed
translation (in both logical and physical units), the output status as well as
encountered errors, if any. For example, with channels and timepoints set to 0 in the
configuration file, invoking BIP with the command:

shell$ bip live-track config.json target.tif source.tif

will generate on output a file source-live-track.json with the following
contents:

{
"config" : {

"file" : "config.json",
"pipeline" : "default",
"source-channel" : 0,
"source-timepoint" : 0,
"target-channel" : 0,
"target-timepoint" : 0

},
"date" : "2021.10.21 (18:56:45)",
"images" : {

"source" : "target.tif",
"target" : "source.tif"

},
"registration" : {

"elapsed-time-msec" : 38,
"physical-horizontal-shift" : 2.905931,
"physical-units" : "micrometer",
"physical-vertical-shift" : 0.415133,
"raw-horizontal-shift" : 7,
"raw-vertical-shift" : 1

},
"report" : {

"error" : "none",
"error-message" : "",
"status" : "ok"

}
}
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13 BIP in action: illustrated examples

The examples below illustrate how diverse tasks of varying complexity can be
performed by combining BIP operators (typically using pipelines). Some examples
are of purely pedagogical interest (for example, when a BIP operator already
implements the task at hand). Others correspond to typical, recurrent needs that are
frequently encountered in bioimage analysis studies. To maximise the benefits of
reading this section, we encourage readers to consider these examples as “exercises”
and to try building their own solutions before reading the proposed solutions.

13.1 Black tophat

Problem. Write down the sequence of operations corresponding to the black tophat
computed with a circular structuring element of radius 3. For an image I , the black
tophat is defined by:

tophat(I) = closing(I)− I

Also write the corresponding pipeline. [Note this is a purely pedagogical problem
since BIP already comes with a tophat-black operator.]

Answer. There are two instructions, the first one to compute the closing of the input
image and the second one to subtract the image from the result of the closing
operation:

shell$ bip closing-filter ball 3 image.tif
shell$ bip subtract image.tif image-closing-filter.tif

Note the order of the arguments in the second instruction: image.tif is the argument
of the subtract operator, which is applied to image-closing-filter.tif.

The corresponding pipeline requires the creation of a variable to store the input image
before it is modified by the closing operation. This allows to recover the input image
to subtract it from the result of the closing operation:

store $image
closing-filter ball 3
subtract $image
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13.2 Selecting objects based on size

Problem. Find the sequence of operations to remove in a segmented image all the
objects that are below some size threshold (taking the number of pixels as a size
measurement). Then write the corresponding pipeline file.

Answer. The principle is to first generate a map of object size and then threshold the
map at the desired minimum size. This yields the following two instructions:

shell$ bip map-parameter area labels.tif
shell$ bip threshold 500 labels-area.tif

This gives a binary image of the objects with a size above the threshold of 500 pixels.
Labelling could then be applied to relabel the selected objects:

shell$ bip labelling labels-area-threshold.tif

There are however two potential problems when proceeding this way. First, the
obtained labels will generally differ from the labels originally stored in labels.tif.
This can be an issue if measurements are to be made on both the original and the
filtered images and combined later on a per label basis. Second, objects that are
touching in the original image would be merged into a single label.

Hence, the proper way to obtain a label image of objects larger than the size threshold
is to mask the original label image with the size-thresholded image:

shell$ bip mask labels-area-threshold.tif labels.tif

Putting it all together into a single pipeline file gives:

# keep a copy of labels for final masking
store $label-image

# threshold objects based on area
map-parameter area
threshold 500
store $binary-mask

# mask original labels with mask of selected objects
recall $label-image
mask $binary-mask
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Original labels map-parameter area threshold 500

labelling (not
recommended)

Masking original labels
(recommended)

Figure 17: Selecting objects based on size (see Section 13.2).

13.3 Selecting objects based on size and shape

Problem. This is a generalization of the problem of Section 13.2: find the sequence of
operations to remove in a segmented image all the objects that are below some size
threshold (taking the number of pixels as a size measurement) and below an
elongation threshold. Then write the corresponding pipeline file.

Answer. The principle is to first generate a map of object size and then threshold the
map at the desired minimum size. Same is performed for elongation. The resulting
two masks are used to filter in cascade the original label image (note they could also
have been combined into a unique mask applied once to the labels):

shell$ bip map-parameter area labels.tif
shell$ bip map-parameter elongation labels.tif
shell$ bip threshold 500 labels-area.tif
shell$ bip threshold 1.5 labels-elongation.tif
shell$ bip mask labels-area-threshold.tif labels.tif
shell$ bip mask labels-elongation-threshold.tif labels-mask.tif

The corresponding pipeline is:
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Original labels map-parameter area threshold 500

map-parameter
elongation

threshold 1.5 Masking original labels
with the two binary masks

Figure 18: Selecting objects based on size and shape (see Section 13.3).

# keep a copy of labels for final masking
store $label-image

# threshold objects based on area
map-parameter area
threshold 500
store $area-mask

# threshold objects based on elongation
recall $label-image
map-parameter elongation
threshold 1.5
store $elongation-mask

# mask original labels with the two binary masks
recall $label-image
mask $area-mask
mask $elongation-mask
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13.4 Labelling clusters of neighbouring objects

Problem. Starting from an image of labelled objects, find the sequence of operators
that assign a same label to objects that are close from each other (consider for example
a distance below 5 units of physical distance). Then write the corresponding pipeline.

Answer. The principle is to dilate objects so that neighbours touch each other. The
resulting aggregates are labelled and the original object shapes are recovered using
masking by the input label image.

Note the dilation is performed below by thresholding the background distance map
rather than by simply calling the dilation operator. This allows to handle images with
non-cubic voxels (or non-square pixels), thanks to the --physical option of the
Euclidean distance map operator (as done in the pipeline version below).

shell$ bip threshold 1 labels.tif
shell$ mv labels-threshold.tif tmp.tif
shell$ bip -f --no-suffix euclidean-distance 0 tmp.tif
shell$ bip -f --no-suffix threshold 5 tmp.tif
shell$ bip -f --no-suffix invert auto tmp.tif
shell$ bip -f --no-suffix labelling tmp.tif
shell$ bip -f --no-suffix mask labels.tif tmp.tif

Tip: note how we repeatedly used a single intermediate image tmp.tif to store the
successive steps in this sequence, thanks to the -f and --no-suffix options. This
prevents generating multiple files with long filenames.

The corresponding pipeline is the following:

# keep a copy of input labels
store $input

# dilate objects with R=5 physical units
threshold 1
euclidean-distance --physical 0
threshold 5
invert auto

# label clusters of objects
labelling

# recover original, individual object shapes
mask $input
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Input image threshold 1 euclidean-distance 0

threshold 5 labelling Masking with input

Figure 19: Labelling clusters of neighbouring objects (see Section 13.4).

13.5 Cell distance maps

Problem. Find the sequence of operators to compute the distance between each cell in
a segmented tissue image to the innermost cells. Then write the corresponding
pipeline.

Answer. Consider the innermost cells are the farthest ones from the cells at the
periphery of the tissue. Therefore, the algorithm consists in first determining the
innermost cells and then in computing the cell distance for each cell within the tissue
to the inner core. This yields the following sequence of operations:

shell$ bip select-outer labels.tif
shell$ bip cell-distance labels-select-outer.tif labels.tif
shell$ bip select max labels-cell-distance.tif
shell$
bip -f cell-distance labels-cell-distance-select.tif labels.tif

Note the -f option in the last call: as this is the second call to the operator
cell-distance on image labels.tif, there would be a conflict on output filenames.
The -f option enforces overwriting existing files.
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Original labels select-outer
($outer)

cell-distance $outer

select max ($inner) cell-distance $inner

Figure 20: Computing cell distance from tissue center (see Section 13.5).

The corresponding pipeline (illustrated in Figure 20) is:

# make a copy of input labels
store $input

# select outer cells
select-outer
store $outer

# compute distance to outer cells
# and select the inner-most cells
recall $input
cell-distance $outer
select max
store $inner

# compute distance to inner cells
recall $input
cell-distance $inner

61



References

Adobe Developers Association (1992). TIFF™ 6.0 Specification.

Biot, E., Crowell, E., Höfte, H., Maurin, Y., Vernhettes, S., and Andrey, P. (2008). A
new filter for spot extraction in N -dimensional biological imaging. In Fifth IEEE
International Symposium on Biomedical Imaging (ISBI’08): From Nano to Macro, pages
975–978, Paris.

Borgefors, G. (1986). Distance transformations in digital images. Computer Vision,
Graphics, and Image Processing, 34(3):344–371.

Borgefors, G. (1996). On digital distance transforms in three dimensions. Computer
Vision and Image Understanding, 64(3):368–376.

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8(6):679–698.

Falk, T., Mai, D., Bensch, R., Çiçek, Ö., Abdulkadir, A., Marrakchi, Y., Böhm, A.,
Deubner, J., Jäckel, Z., Seiwald, K., Dovzhenko, A., Tietz, O., Dal Bosco, C., Walsh,
S., Saltukoglu, D., Tay, T. L., Prinz, M., Palme, K., Simons, M., Diester, I., Brox, T.,
and Ronneberger, O. (2019). U-Net: deep learning for cell counting, detection,
and morphometry. Nature Methods, 16:67–70.

Felzenszwalb, P. F. and Huttenlocher, D. P. (2012). Distance transforms of sampled
functions. Theory of Computing, 8(19):415–428.

Keller, D., Stinus, S., Umlauf, D., Gourbeyre, E., Biot, E., Olivier, N., Mahou, P.,
Beaurepaire, E., Andrey, P., and Crabbe, L. (2024). Non-random spatial
organization of telomeres varies during the cell cycle and requires lap2 and baf.
iScience, 27:109343.

Kramer, H. P. and Bruckner, J. B. (1975). Iterations of a non-linear transformation for
enhancement of digital images. Pattern Recognition, 7(1–2):53–58.

Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: a high resolution 3D surface
construction algorithm. ACM Computer Graphics, 21(4):163–169.

Meijster, A. and Wilkinson, M. H. (2002). A comparison of algorithms for connected
set openings and closings. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(4):484–494.

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man, and Cybernetics, 9(1):62–66.

Ridler, T. W. and Calvard, S. (1978). Picture thresholding using an iterative selection
method. IEEE Transactions on Systems, Man, and Cybernetics, 8(8):630–632.

Rosin, P. L. (2001). Unimodal thresholding. Pattern Recognition, 34:2083–2096.

Soille, P. (2003). Morphological Image Analysis: Principles and Applications.
Springer-Verlag, Berlin, Germany, second edition.

62



Sternberg, S. R. (1986). Grayscale morphology. Computer Vision, Graphics, and Image
Processing, 35:333–355.

Vincent, L. (1993a). Grayscale area openings and closings, their efficient
implementation and applications. In Proceedings of the EURASIP Workshop on
Mathematical Morphology and its Applications to Signal Processing, pages 22–27,
Barcelona, Spain.

Vincent, L. (1993b). Morphological grayscale reconstruction in image analysis:
applications and efficient algorithms. IEEE Transactions on Image Processing,
2(2):176–201.

Welch, T. A. (1984). A technique for high-performance data compression. Computer,
17:8–19.

Wolny, A., Cerrone, L., Vijayan, A., Tofanelli, R., Barro, A. V., Louveaux, M., Wenzl, C.,
Strauss, S., Wilson-Sánchez, D., Lymbouridou, R., Steigleder, S. S., Pape, C.,
Bailoni, A., Duran-Nebreda, S., Bassel, G. W., Lohmann, J. U., Tsiantis, M.,
Hamprecht, F. A., Schneitz, K., Maizel, A., and Kreshuk, A. (2020). Accurate and
versatile 3D segmentation of plant tissues at cellular resolution. eLife, 9:e57613.

Xue, J.-H. and Zhang, Y.-J. (2012). Ridler and Calvard’s, Kittler and Illingworth’s and
Otsu’s methods for image thresholding. Pattern Recognition Letters, 33(6):793–797.

Zack, G. W., Rogers, W. E., and Latt, S. A. (1977). Automatic measurement of sister
chromatid exchange frequency. The Journal of Histochemistry and Cytochemistry,
25:741–753.

63


	Introduction
	Image types
	Numerical types
	Batch processing
	Pipelines
	Image file formats

	Installation instructions
	Linux
	Windows

	Basic operations
	Image transforms
	Filters
	Segmentation operators
	Intensity thresholding operators
	Watershed transform operators
	Label operators
	Segmentation-related operators
	Evaluation of segmentation results

	Mathematical morphology
	Analysis operators
	Label operators
	Distance maps
	Measurements
	Export operators

	Pipelines
	Writing and using pipeline files
	Pipelines without pipeline files
	Pipeline variables

	Advanced usage
	Neighbourhood systems and connectivity
	Pattern substitutions on file and directory names

	Global options
	Project-specific operators
	BIP in action: illustrated examples
	Black tophat
	Selecting objects based on size
	Selecting objects based on size and shape
	Labelling clusters of neighbouring objects
	Cell distance maps


